Tema 3. Aplicaciones Lineales

Álgebra. 1º IEC

III. Aplicaciones Lineales

- III.1. Aplicaciones entre espacios vectoriales
 - III.1.1. Definición
 - III.1.2. Aplicación definida por una matriz
- III.2. Núcleo e Imagen de una aplicación
 - III.2.1. Definición
 - III.2.2. Rango y Nulidad de una aplicación
- III.3. Tipos de aplicaciones
 - III.3.1. Definición
 - III.3.2. Aplicaciones inyectivas
 - III.3.3. Aplicaciones sobreyectivas
 - III.3.4. Aplicaciones biyectivas
 - III.3.5. Isomorfismo de coordenadas
- III.4. Aplicaciones y sistemas de ecuaciones
- III.5. Operaciones con aplicaciones
 - III.5.1. Composición de aplicaciones
 - III.5.2. Aplicación inversa
- III.6. Matrices de las aplicaciones lineales
 - Box III.6.1. Algoritmo matriz de una aplicación lineal
 - III.6.1. Matrices Semejantes de un Endomorfismo
 - III.6.2. Matrices Equivalentes de un Homomorfismo
 - III.6.3. Diagonalización por equivalencia: forma canónica de una aplicación Box III.6.2. Diagonalización por equivalencia

III.1. Aplicaciones entre espacios vectoriales

III.1.1. Definición

Definición. Sean V y W dos espacios vectoriales, ambos definidos sobre el mismo cuerpo K. Una aplicación de V en W es una regla f que asigna a cada vector $\vec{v} \in V$ un único vector $f(\vec{v}) \in W$:

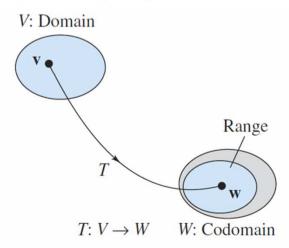
$$\begin{split} f \colon V &\to W \\ \vec{v} &\mapsto \vec{w} = f(\vec{v}) \\ \forall \vec{v} \in V, \exists ! \, \vec{w} \in W \mid \vec{w} = f(\vec{v}) \end{split}$$

El conjunto V (W) se llama **dominio** (**codominio**) de f. Si $\vec{v} \in V$, el vector $\vec{w} = f(\vec{v}) \in W$ es la (única) **imagen** de \vec{v} por f (o imagen de \vec{v} bajo la acción de f). El subconjunto de vectores $\vec{v} \in V$ cuya imagen es $\vec{w} \in W$ se llama la **preimagen** de \vec{w} y se denota por $f^{-1}(\vec{w}) = \{\vec{v} \in V \mid f(\vec{v}) = \vec{w} \in W\} \subseteq V$.

El conjunto de todas las imágenes de los vectores de V se llama **imagen de la aplicación** f (o rango o recorrido), y se denota por $f(V) = Im(f) \subseteq W$.

Nota: Para que la aplicación sea tal, todo vector de $\vec{v} \in V$ debe tener una y solo una imagen en W.

Nota: En general $Im(f) \neq W$. $f^{-1}(W) = V$ aunque algunos vectores de W puedan no tener preimagen.



Definición. Sean V y W dos espacios vectoriales, ambos sobre el mismo cuerpo de escalares K. Una aplicación $f:V\to W$ se dice que es una **aplicación lineal** (u **homomorfismo**) entre espacios vectoriales si cumple:

$$f(\vec{u} + \vec{v}) = f(\vec{u}) + f(\vec{v}), \ \forall \vec{u}, \vec{v} \in V$$

$$f(c \cdot \vec{u}) = c \cdot f(\vec{u}), \ \forall \vec{u} \in V, \forall c \in K$$

$$\Rightarrow f(c\vec{u} + d\vec{v}) = f(c\vec{u}) + f(d\vec{v}) = cf(\vec{u}) + df(\vec{v}), \ \forall \vec{u}, \vec{v} \in V, \ \forall c, d \in K$$

Nota: Así, una aplicación lineal f de un espacio vectorial V a otro W es una regla que asigna a cada vectores $\vec{u}, \vec{v} \in V$ unos únicos vectores $f(\vec{u}), f(\vec{v}) \in W$ tales que $f(c\vec{u} + d\vec{v}) = cf(\vec{u}) + df(\vec{v})$.

Nota: Una aplicación lineal en la que V = W, esto es $f: V \to V$ se llama endomorfismo (u operador lineal).

- Aplicación cero o nula: $0: V \to W$ tal que $0(\vec{u}) = \vec{0}, \ \forall \vec{u} \in V$.
- Aplicación identidad: $i: V \to V$ tal que $i(\vec{u}) = \vec{u}, \ \forall \vec{u} \in V$.
- En general $f: K^n \to K^m$ con $f(\vec{x}) = f(x_1, x_2, \dots x_n) = (\sum_{i=1}^n a_i x_i, \sum_{i=1}^n b_i x_i, \dots, \sum_{i=1}^n l_i x_i)$ es lineal.

Propiedades:

Sea $f: V \to W$ una aplicación lineal entre espacios vectoriales sobre el mismo cuerpo K. Se verifica:

- $f(\vec{0}) = \vec{0}$ (toda aplicación lineal lleva el vector $\vec{0} \in V$ al vector $\vec{0} \in W$; $\vec{0}$ se aplica en sí mismo)
- $f(-\vec{u}) = -f(\vec{u})$, $\forall \vec{u} \in V$ (la imagen del simétrico u opuesto es el opuesto de la imagen)
- $f(\vec{u} \vec{v}) = f(\vec{u}) f(\vec{v}), \ \forall \vec{u}, \vec{v} \in V$
- Si $f: V \to W$ y $g: W \to U$ son aplicaciones lineales, su composición $g \circ f: V \to U$ también lo es

Nota: $\vec{0}$ es el vector nulo, aunque puede ser diferente en V y W.

III.1.2. Aplicación definida por una matriz

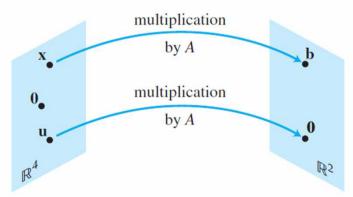
Teorema. Toda matriz $A_{m \times n}$ con escalares en un cuerpo K determina una única aplicación lineal de la forma $f: K^n \to K^m$ y definida por $\vec{x} \mapsto f(\vec{x}) = A \cdot \vec{x}$, donde $\vec{x} \in K^n$ y $f(\vec{x}) \in K^m$. Generalmente, dicha aplicación f se denotará por el símbolo de la matriz A de la forma $A: K^n \to K^m$.

Nota: 1) La aplicación lineal definida por una matriz A se denota por $f(\vec{x}) = A \cdot \vec{x}$ o $\vec{x} \mapsto A \cdot \vec{x}$. 2) Si A tiene n columnas y m filas, el dominio de f es K^n y el codominio es K^m (el número de columnas (filas) define la dimensión del dominio (codominio)). 3) $\vec{x} \in K^n$ y $f(\vec{x}) \in K^m$ se escriben como vectores columna.

Teorema. Sea $f: K^n \to K^m$ una aplicación lineal. Existe una única matriz $A_{m \times n}$ tal que $f(\vec{x}) = A \cdot \vec{x}$. Así, toda aplicación lineal de la forma $f: K^n \to K^m$ puede expresarse mediante una matriz $A_{m \times n}$ en forma matricial $f(\vec{x}) = A \cdot \vec{x}$. A dicha matriz se le llama matriz canónica de la aplicación f y es de la forma: $A_{m \times n} = [f(\vec{e}_1) \ f(\vec{e}_2) \ ... \ f(\vec{e}_n)]$ donde $E = \{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ es la base canónica del dominio K^n

Nota: Así, basta conocer las imágenes de los vectores de la base canónica $\{f(\vec{e}_1), ..., f(\vec{e}_n)\}$ del dominio K^n para determinar la aplicación $f(\vec{x}) = A \cdot \vec{x}$.

Nota: Toda aplicación lineal $f: K^n \to K^m$ es una transformación matricial $\vec{x} \mapsto f(\vec{x}) = A_{m \times n} \vec{x}$, y a la inversa. No obstante, no todas las aplicaciones lineales son matriciales (solo aquellas entre espacios K^r).



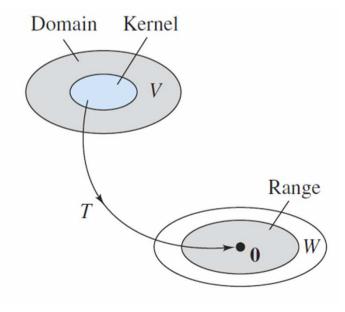
$$f: K^n \to K^m \Leftrightarrow f(\vec{x}) = [f(\vec{e}_1) \ f(\vec{e}_2) \ \dots \ f(\vec{e}_n)] \cdot \vec{x} = A_{m \times n} \cdot \vec{x}$$

III.2. Núcleo e Imagen de una aplicación

III.2.1. Definición

Definición. Sea $f: V \to W$ una aplicación lineal entre los espacios vectoriales V y W, ambos sobre un mismo cuerpo K.

- 1. El conjunto imagen es el conjunto de todos los vectores $f(\vec{v}) \in W$ que son imagen de V (de todos los vectores $\vec{v} \in V$) y es un subespacio vectorial de W llamado imagen (o rango) de la aplicación lineal f, que se denota por $Im(f) \subseteq W$ (o f(V)), $Im(f) = \{f(\vec{v}) \in W \mid \vec{v} \in V\} \subseteq W$
- 2. El **núcleo** o espacio nulo **de la aplicación lineal** f, escrito $Nuc(f) \subseteq V$ (o Ker(f)) es el conjunto de elementos de $\vec{v} \in V$ que se aplican en $\vec{0} \in W$ (o sea aquellos cuya imagen es $f(\vec{v}) = \vec{0} \in W$) y forma un subespacio vectorial de V: $Nuc(f) = f^{-1}(\vec{0}) = \{\vec{v} \in V \mid f(\vec{v}) = \vec{0}\} \subseteq V$.



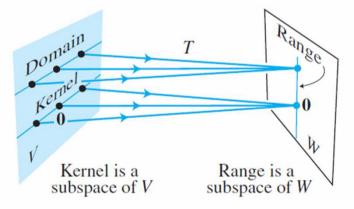


FIGURE 2 Subspaces associated with a linear transformation.

Corolario. Si $A_{m \times n}$ es la matriz canónica de una aplicación lineal $f: K^n \to K^m$ (o alternativamente si f es la aplicación lineal dada por $f(\vec{x}) = A \cdot \vec{x}$):

- 1. El núcleo de f, Nuc(f) coincide con el espacio nulo de la matriz A, Nuc(f) = Nul(A), o sea, es el espacio solución del sistema homogéneo $A \cdot \vec{x} = \vec{0}$.
- 2. La imagen de f, Im(f) es el espacio columna de A, Im(f) = Col(A).

Nota: Así, si f proviene de una transformación matricial $f(\vec{x}) = A \cdot \vec{x}$, el núcleo y la imagen de f son simplemente el espacio nulo y el espacio columna de A.

Nota: Como Im(f) y Nuc(f) son subespacios deben tener bases asociadas. Es posible hallar la base de Nuc(f) y de Im(f) de la misma forma que las bases de Nul(A) y Col(A), respectivamente.

Teorema. Sea $f: V \to W$ una aplicación lineal entre espacios vectoriales sobre un mismo cuerpo K. Si $\{\vec{v}_1, ..., \vec{v}_p\}$ es un **sistema de vectores de V linealmente dependiente** entonces $\{f(\vec{v}_1), ..., f(\vec{v}_p)\}$ es un **sistema de vectores de W linealmente dependiente**. No obstante, si $\{\vec{v}_1, ..., \vec{v}_p\} \in V$ es independiente, $\{f(\vec{v}_1), ..., f(\vec{v}_p)\} \in W$ puede ser dependiente o independiente.

Nota: Así, la independencia de vectores no es una propiedad que se conserve en las aplicaciones lineales.

Proposición. Sea $f: V \to W$ una aplicación lineal entre espacios vectoriales sobre un mismo cuerpo K. Si $S = \{\vec{v}_1, ..., \vec{v}_p\} \in V$ es un sistema generador de V entonces $f(S) = \{f(\vec{v}_1), ..., f(\vec{v}_p)\} \in W$ es un sistema generador de Im(f).

Nota: Así, si S es sistema generador de V entonces dim(Im f) = dim(Lin(f(S))) = rang(f(S)). No obstante, f(S) podrá ser linealmente dependiente, aún cuando S sea independiente.

III.2.2. Rango y Nulidad de una aplicación

Definición. Sea $f: V \to W$ una aplicación lineal entre espacios vectoriales sobre el mismo cuerpo K. Se define el **rango de** f, rang(f) como la dimensión de su imagen $\dim(Im f)$, y la **nulidad de** f, Nul(f) como la dimensión de su núcleo $\dim(Nuc f)$:

- rang(f) = dim(Im f)
- $Nul(f) = \dim(Nuc f)$

Teorema. Sea $f: V \to W$ una aplicación lineal entre espacios vectoriales de dimensión finita ambos sobre el mismo cuerpo K, y sea $A_{m \times n}$ la matriz canónica de f. El rango de la aplicación lineal f es igual al rango de su matriz asociada A, rang(f) = rang(A).

Nota: Si $\{\vec{v}_1, ..., \vec{v}_p\}$ es un sistema generador de V entonces $rang(f) = \dim(Im f) = rang(\{f(\vec{v}_1), ..., f(\vec{v}_p)\})$

Nota: Como A define una aplicación, ambas definiciones del rango se corresponden y Col(A) = Im(f).

Teorema del Rango (continuación del Teorema del Rango de una matriz). Sea $f:V \to W$ una aplicación lineal entre espacios vectoriales sobre el mismo cuerpo K. Si el espacio V tiene dimensión finita:

$$\dim V = \dim(\operatorname{Im} f) + \dim(\operatorname{Nuc} f) = \operatorname{rang}(f) + \operatorname{Nul}(f)$$

Nota: Así la suma de las dimensiones de la imagen y el núcleo de una aplicación lineal es la dimensión de su dominio V.

Nota: Si la aplicación viene dada por una matriz $A_{m \times n}$, esto es, $f: K^n \to K^m$ entonces rang(f) = rang(A) y $n = \dim V = rang(f) + Nul(f) = rang(A) + Nul(A)$ ya que $rang(f) = rang(A) = \dim(Col(A))$ (esto es, la imagen de f es precisamente el espacio columna Col(A)) y $Nul(f) = \dim(Nuc(f)) = \dim(Nul(A))$.

III.3. Tipos de aplicaciones

III.3.1. Definición

• Inyectiva (o no singular): si dos elementos diferentes de V tienen imágenes diferentes en W (o sea la preimagen de todo $\vec{w} \in Im(f)$ consta de un único vector):

$$f$$
 inyectiva $\Leftrightarrow \forall \vec{v}, \vec{v}' \in V \ y \ \vec{v} \neq \vec{v}' \Rightarrow f(\vec{v}) \neq f(\vec{v}') \ of finyectiva $\Leftrightarrow \forall \vec{v}, \vec{v}' \in V \ y \ f(\vec{v}) = f(\vec{v}') \Rightarrow \vec{v} = \vec{v}'$$

• Sobreyectiva (o suprayectiva, o que f aplica V sobre W): si todo $\vec{w} \in W$ es imagen de al menos un $\vec{v} \in V$ (o sea, todo elemento de W tiene alguna preimagen en V):

$$f$$
 sobrevectiva $\Leftrightarrow \forall \vec{w} \in W, \exists \vec{v} \in V \mid \vec{w} = f(\vec{v}) \text{ \'o } f$ sobrevectiva $\Leftrightarrow f(V) \equiv Im(f) = W$

• Biyectiva (o uno a uno): si f es inyectiva y sobreyectiva, esto es si todo $\vec{w} \in W$ es imagen de un y solo un $\vec{v} \in V$ (o sea, todo elemento de W tiene una única preimagen en V):

$$f \ biyectiva \Leftrightarrow \forall \vec{w} \in W, \exists! \ \vec{v} \in V \ | \ \vec{w} = f(\vec{v}) \ \ \acute{o} \ \ f \ biyectiva \Leftrightarrow \vec{w} = f(\vec{v}) \Leftrightarrow \vec{v} = f^{-1}(\vec{w})$$

Nota: Si f es biyectiva la correspondencia inversa $f^{-1}:W\to V$ define una aplicación biyectiva.

		Inyectiva	
		No	Sí
Sobreyectiva	No	X Y a b c d	$\begin{array}{c c} X & Y \\ \hline 1 & & a \\ 2 & & b \\ 3 & & c \\ \hline d & & \end{array}$
	Sí	X Y a a b b c c 4	$\begin{array}{c c} X & Y \\ \hline 1 & & a \\ 2 & & b \\ 3 & & c \\ 4 & & d \end{array}$

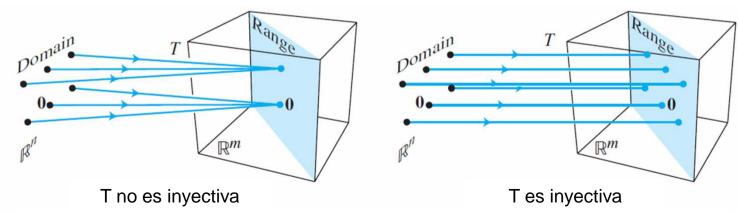
III.3.2. Aplicaciones inyectivas

Definición. Una aplicación lineal $f: V \to W$ es **singular** si la imagen de algún vector no nulo bajo f es $\vec{0}$, o sea si existe algún $\vec{v} \neq \vec{0} \in V$ tal que $f(\vec{v}) = \vec{0}$. f es **no singular**, si únicamente $\vec{0} \in V$ se aplica en $\vec{0} \in W$, o equivalentemente si su núcleo consiste solamente en el vector $\vec{0} \in V$, esto es $Nuc(f) = \{\vec{0}\} \in V$.

Teorema. Sea una aplicación lineal $f: V \to W$ no singular. En tal caso, la imagen de cualquier conjunto linealmente independiente del dominio V es un conjunto linealmente independiente en la imagen de la aplicación $Im(f) \subseteq W$.

Teorema. Sea $f: V \to W$ una aplicación lineal entre espacios vectorial sobre el mismo cuerpo K. Se verifica que f es **inyectiva** si y solo si se cumple alguna de las siguientes propiedades, que son equivalentes:

- 1) f es no singular, o sea, $Nuc(f) = \{\vec{0}\}$.
- 2) $\dim V = \dim(Im f)$ y V tiene dimensión finita.
- 3) Siendo $B = \{\vec{b_1}, ..., \vec{b_n}\}$ una base de V, entonces $f(B) = \{f(\vec{b_1}), ..., f(\vec{b_n})\}$ es una base de Im(f), es decir, si y solo si, f(B) es un sistema independiente de vectores de Im(f).



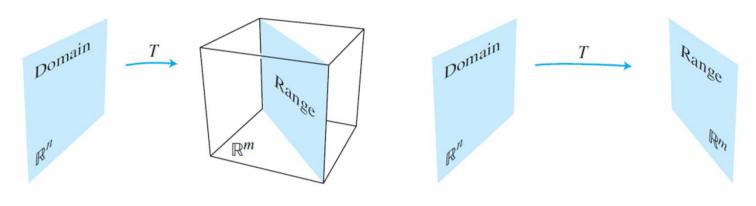
¿Inyectiva? = ¿es todo \boldsymbol{b} de Im(f) la imagen de un único vector del dominio \boldsymbol{R}^n ?

III.3.3. Aplicaciones sobreyectivas

Teorema. Sea $f: V \to W$ una aplicación lineal, con W un espacio vectorial de dimensión finita. f es sobreyectiva si y solo si rang(f) = dim(W).

Nota: También se dice que f es sobre W, o que f mapea V en todo W.

Nota: Si $f: V \to W$ y W' = f(V) entonces $f: V \to W'$ es sobreyectiva.



T no es sobreyectiva

T es sobreyectiva

¿Sobreyectiva? = ¿Es la Imagen de T, $Im(T) = R^m$ (codominio)?

Teorema. Sea $f: K^n \to K^m$ una aplicación lineal y $A_{m \times n}$ la matriz canónica para f. Entonces:

- 1) f es **inyectiva** si y solo si la ecuación $f(\vec{x}) = \vec{0}$ tiene solamente la solución trivial, esto es, si y solo si las **columnas** de A son linealmente **independientes**.
- 2) f es sobreyectiva si y solo si las columnas de A generan todo K^m .

III.3.4. Aplicaciones biyectivas

Teorema: Una aplicación lineal $f: V \to W$ entre espacios vectoriales de la misma dimensión finita es inyectiva si y solo si es sobreyectiva: $[\dim(V) = \dim(W)] f inyectiva \Leftrightarrow f sobreyectiva$.

Nota: En otras palabras, si $f: V \to W$ es lineal, V tiene dimensión finita y $\dim V = \dim W$ entonces la aplicación es biyectiva si y solo si f es no singular (inyectiva) o si y solo si f es sobreyectiva. Notar que la condición $\dim V = \dim W$ se cumple, por definición, en cualquier endomorfismo $f: V \to V$.

Teorema. La aplicación lineal $f: V \to W$ es biyectiva si y solo si Im(f) = W (sobreyectiva) y $Nuc(f) = \{0\}$ (inyectiva). Así, si V es de dimensión finita, $f: V \to W$ es biyectiva si y solo si $\dim V = \dim f(V) = \dim W$.

Propiedades:

- Si f es biyectiva entonces, existe su inversa $f^{-1}: W \to V$, y es también lineal y biyectiva.
- Si $f: V \to W$ es biyectiva la imagen de una base $B = \{\vec{b}_1, \vec{b}_2, ..., \vec{b}_n\}$ de V es una base $f(B) = \{f(\vec{b}_1), f(\vec{b}_2), ..., f(\vec{b}_n)\}$ de W, y por tanto los espacios V y W tienen la misma dimensión.



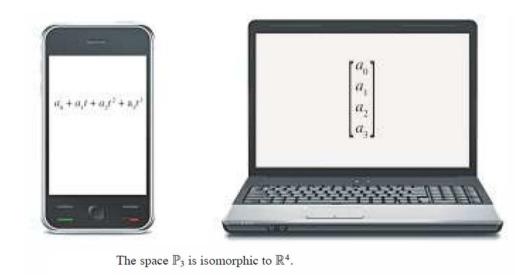
III.3.5. Isomorfismo de coordenadas

Definición. Se llama **isomorfismo** a una **aplicación lineal** $f:V \to W$ entre espacios vectoriales sobre el mismo cuerpo K que sea **biyectiva**. Si $f:V \to W$ es un isomorfismo, los dos espacios vectoriales se dicen isomorfos.

Nota: Un homomorfismo inyectivo / sobreyectivo / biyectivo se dice que es un monomorfismo / epimorfismo / isomorfismo. Los endomorfismos $f: V \to V$ que son biyectivos se llaman automorfismos.

Teorema: Dos **espacios** vectoriales de dimensión finita sobre el mismo cuerpo K son **isomorfos** (esto es, entre ellos existe algún isomorfismo) si y solo si tienen la **misma dimensión**.

Nota: En un isomorfismo puede considerarse que los espacios vectoriales V y W son iguales. Los dos espacios se comportan del mismo modo aún cuando sean objetos matemáticos muy distintos.



Definición. Sea V un espacio vectorial de dimensión finita n sobre un cuerpo K. Dada una base de V, $B = \{\vec{b}_1, \vec{b}_2, ..., \vec{b}_n\}$ se considera la **aplicación de coordenadas** $[\]$ que a cada vector $\vec{x} \in V$ le asocia su sistema de coordenadas $[\vec{x}]_B = (x_1, ..., x_n) \in K^n$ respecto a la base B:

$$[]: V \to K^n$$

$$\vec{x} \mapsto [\vec{x}]_B = (x_1, ..., x_n)$$

siendo x_i la coordenada i=1,2,...n de \vec{x} en la base B. Esta aplicación es **lineal y biyectiva**, tal que:

$$[c\vec{u} + d\vec{v}] = c[\vec{u}] + d[\vec{v}], \forall \vec{u}, \vec{v} \in K, \forall c, d \in K$$

Nota: La aplicación recíproca $[\]^{-1}: K^n \to V$ también es lineal y biyectiva. Así, la función de coordenadas $[\]$ define un isomorfismo del espacio V en el K^n .

Nota: La selección de una base B cualquiera de V define el isomorfismo $\vec{x} \mapsto [\vec{x}]_B$ que conecta el espacio V, posiblemente desconocido, con el espacio conocido K^n .

Nota: Salvo notación, no hay nada que diferencie a los vectores de V de los de K^n y asi \vec{x} y $[\vec{x}]_B$ son indistinguibles. Todo cálculo sobre V se reproduce exactamente en K^n , y viceversa.

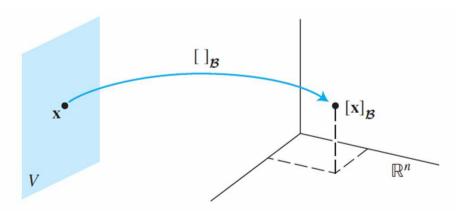


FIGURE 5 The coordinate mapping from V onto \mathbb{R}^n .

III.4. Aplicaciones y sistemas de ecuaciones

- 1) Preguntar si f es inyectiva es una pregunta de unicidad de soluciones de $A \cdot \vec{x} = \vec{b}$.
 - Si f es inyectiva, $\forall \vec{b} \in K^m$ la ecuación $f(\vec{x}) = \vec{b}$ tiene o bien una solución o bien ninguna solución, esto es, cada $\vec{b} \in Im(f)$ es la imagen de (a lo más) un $\vec{x} \in K^n$.
 - f no es inyectiva cuando algún $\vec{b} \in Im(f)$ es la imagen de más de un vector $\vec{x} \in K^n$.
- 2) Preguntar si f es sobreyectiva (o mapea K^n sobre K^m) es una pregunta de existencia de soluciones de $A \cdot \vec{x} = \vec{b}$.
 - f es sobreyectiva si $\forall \vec{b} \in K^m$ existe por lo menos una solución de $f(\vec{x}) = \vec{b}$, esto es si cada $\vec{b} \in K^m$ es la imagen de por lo menos un $\vec{x} \in K^n$.
 - f no es sobreyectiva cuando existe algún $\vec{b} \in K^m$ tal que $f(\vec{x}) = \vec{b}$ no tiene solución.

Teorema. Si A_n es una matriz cuadrada, el sistema asociado $A\vec{x} = \vec{b}$ verifica:

- 1. Si $A\vec{x} = \vec{0}$ es compatible determinado (solo tiene la solución $\vec{x} = \vec{0}$), $A\vec{x} = \vec{b}$ tendrá solución única $\forall \vec{b} \in K^n$.
- 2. Si $A\vec{x} = \vec{0}$ es **compatible indeterminado** (tiene alguna solución no nula), entonces:
 - a. Existen valores $\vec{b} \in K^n$ para los que $A\vec{x} = \vec{b}$ no tiene solución (incompatible).
 - b. Siempre que exista una solución de $A\vec{x} = \vec{b}$, ésta no será única (compatible indeterminado).

III.5. Operaciones con aplicaciones

III.5.1. Composición de aplicaciones

Definición. Sean V, U y W espacios vectoriales sobre un mismo cuerpo K y sean $f:V \to U$ y $g:U \to W$ aplicaciones lineales. La **función compuesta de** f **con** g, $g \circ f$ es la aplicación de V en W definida por:

$$(g \circ f): V \to W$$

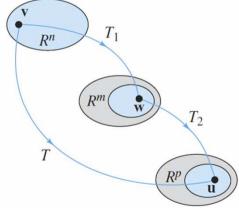
 $\vec{x} \mapsto \vec{z} = (g \circ f)(\vec{x}) = g(f(\vec{x})) = g(\vec{y})$

Nota: El dominio (codominio) de $g \circ f$ es el dominio (codominio) de f(g), esto es V(W). La composición solo está definida si la imagen de f está contenida en el dominio de g, o sea si $Im(f) \subseteq U$.

Teorema. La composición de dos aplicaciones lineales es una aplicación lineal. Así, toda aplicación lineal $f: V \to U$ se puede componer con cualquier aplicación lineal $g: U \to W$ siendo el resultado $g \circ f: U \to W$ una nueva aplicación lineal.

Propiedades: Si f, g y h son homomorfismos y $k \in K$, siempre que las siguientes composiciones tengan sentido se verifica que:

- $(g \circ f) \circ h = g \circ (f \circ h)$
- $(g+f) \circ h = g \circ h + f \circ h$ y $g \circ (f+h) = g \circ f + g \circ h$
- $k \cdot (g \circ h) = (k \cdot g) \circ h = g \circ (k \cdot h)$
- $(g \circ f) \neq (f \circ g)$ y $(g^{\circ}f)^{-1} = f^{-1} \circ g^{-1}$



Composition of Transformations

Nota: Además la composición de dos aplicaciones lineales inyectivas / sobreyectivas / biyectivas es una aplicación lineal inyectiva / sobreyectiva / biyectiva.

Teorema. Dadas las matrices $A_{m \times p}$ y $B_{p \times n}$ y haciendo corresponder cada una de ellas con su aplicación lineal asociada $(g: K^p \to K^m \text{ y } f: K^n \to K^p, \text{ respectivamente})$ respecto a las bases canónicas entonces $C = A \cdot B$ es la **matriz canónica** asociada a la aplicación lineal $g \circ f$, esto es $g \circ f = C \cdot \vec{x} = (A \cdot B) \cdot \vec{x}$.

Nota: Lo anterior se puede generalizar a la composición de n aplicaciones lineales. Así, si las matrices canónicas de $f_1, f_2, \dots f_n$ son $A_1, A_2, \dots A_n$ la matriz canónica de la composición $f = f_n \circ f_{n-1} \dots f_2 \circ f_1$ es $A = A_n \cdot A_{n-1} \dots A_2 \cdot A_1$

Propiedades: Siempre que los siguientes productos de matrices tengan sentido, se verifica:

$$\cdot (A \cdot B) \cdot C = A \cdot (B \cdot C)$$

•
$$(A+B) \cdot C = A \cdot C + A \cdot C$$
 y $A \cdot (B+C) = A \cdot B + A \cdot C$

$$\cdot k \cdot (A \cdot B) = (k \cdot A) \cdot B = A \cdot (k \cdot B)$$

•
$$A \cdot B \neq B \cdot A \text{ y } (A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

Nota: En el producto $A \cdot B$, el número de columnas de A debe corresponder al número de filas de B, ya que el codominio de la aplicación $f(\vec{x}) = B\vec{x}$ es el dominio de $g(\vec{x}) = A\vec{x}$ en $g \circ f$.

Nota: Puesto que el producto de matrices no es conmutativo, el orden es importante en una composición. Por eso, en general $g \circ f$ no es igual a $f \circ g$.

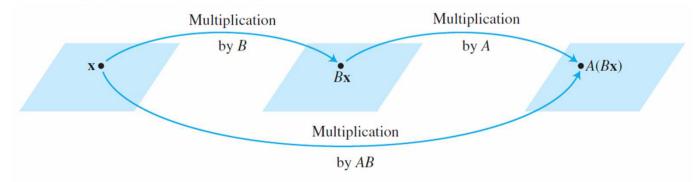


FIGURE 3 Multiplication by *AB*.

III.5.2. Aplicación inversa

Teorema. Sea $f: V \to W$ una aplicación lineal. Se dice que f es **invertible** si su relación inversa f^{-1} es también una aplicación $g = f^{-1}: W \to V$, esto es si existe una aplicación lineal $g: W \to V$ tal que:

$$f^{-1}: W \to V \mid f^{-1}(\vec{y}) = \vec{x} \Leftrightarrow \vec{y} = f(\vec{x}) \ \forall \vec{y} \in W \ \text{o} \ f^{-1} \Leftrightarrow \exists ! \ g: W \to V \mid (g^{\circ}f)(\vec{x}) = i_V, (f^{\circ}g)(\vec{y}) = i_W$$

Nota: La aplicación inversa, si existe, es única y es una aplicación lineal.

Nota: Por tanto: 1) Si $(g^{\circ}f) = i_{V} \Rightarrow g = f^{-1}$; 2) Si $(f^{\circ}g) = i_{W} \Rightarrow g = f^{-1}$. Así, para calcular la inversa de una aplicación f basta encontrar una función g que compuesta con f nos dé la identidad.

Teorema. Una aplicación lineal $f: V \to W$ es **invertible** si y solo si f es **biyectiva** (un isomorfismo).

Nota: Si f es invertible, entonces su inversa f^{-1} también es biyectiva con $(f^{-1})^{-1} = f$.

Nota: Por ser biyectiva, las dimensiones del dominio y codominio son iguales (son isomorfos), por lo que la matriz de la aplicación f (y g) será cuadrada.

Teorema. Sea $f: V \to V$ un **endomorfismo** de un espacio vectorial V de dimensión finita y sea A_n la matriz (cuadrada) canónica de f. Entonces f es **invertible** si y solo si A es una matriz **invertible**. Más aún, si A es la matriz canónica de f, la inversa de f viene dada por $f^{-1}(\vec{x}) = A^{-1} \cdot \vec{x}$ y es única, esto es A^{-1} es la matriz canónica de f^{-1} .

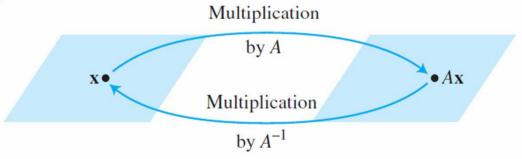


FIGURE 2 A^{-1} transforms $A\mathbf{x}$ back to \mathbf{x} .

III.6. Matrices de las aplicaciones lineales

Teorema (Determinación de una aplicación lineal). Sean V y W espacios vectoriales sobre un cuerpo K. Sea $B = \{\vec{b}_1, ..., \vec{b}_n\}$ una base de V y $\{\vec{w}_1, ..., \vec{w}_n\}$ un sistema de vectores cualquiera de W. Existe una única aplicación lineal $f: V \to W$ tal que $f(\vec{b}_1) = \vec{w}_1, ..., f(\vec{b}_n) = \vec{w}_n$. En otras palabras, f está determinada inequívocamente para todo $\vec{v} \in V$ mediante el sistema de vectores $\{f(\vec{b}_1), ..., f(\vec{b}_n)\} \subseteq W$, esto es por las imágenes de los vectores de una base del dominio.

Nota: Los vectores $\{\vec{w}_1, \dots, \vec{w}_n\} = \{f(\vec{b}_1), \dots, f(\vec{b}_n)\} \subseteq W$ pueden ser linealmente independientes o dependientes (o incluso iguales entre sí).

Teorema. Sea $f: V \to W$ una aplicación lineal entre dos espacios vectoriales sobre el mismo cuerpo K, con $\dim V = n$ y $\dim W = m$, y sea $B = \{\vec{b_1}, \vec{b_2}, ..., \vec{b_n}\}$ y $C = \{\vec{c_1}, \vec{c_2}, ..., \vec{c_m}\}$ bases de V y W, respectivamente. Siendo así, la aplicación f dada por $\vec{x} \mapsto \vec{y} = f(\vec{x})$ admite la siguiente ecuación matricial respecto de las bases B de V y C de W:

$$[f(\vec{x})]_C = A_{CB} \cdot [\vec{x}]_B = \left[\left[f(\vec{b}_1) \right]_C \quad \left[f(\vec{b}_2) \right]_C \dots \quad \left[f(\vec{b}_n) \right]_C \right] \cdot [\vec{x}]_B, \quad \forall \vec{x} \in V$$

donde A_{CB} es la matriz traspuesta de la matriz de coeficientes del sistema (I), o sea aquella que tiene como columnas las coordenadas en la base C de las imágenes de los vectores de la base B:

$$A_{CB} = \left[\left[f(\vec{b}_1) \right]_C \quad \left[f(\vec{b}_2) \right]_C \dots \quad \left[f(\vec{b}_n) \right]_C \right]$$

 A_{CB} se llama la matriz $m \times n$ de la aplicación lineal $f: V \to W$ en las bases B (de V) y C (de W) (o bien la representación matricial de f relativa a las bases B del dominio y C del codominio). Para cualquier $\vec{x} \in V$ el vector coordenado de $f(\vec{x})$ en C, $[f(\vec{x})]_C$ es el producto de A_{CB} por el vector coordenado de \vec{x} en B, $[\vec{x}]_B$.

Nota: Si se dan otras bases de V y W diferentes a B y/o C, la matriz de la aplicación será distinta.

Sea $f\colon V\to W$ una aplicación lineal entre los espacios V y W de dimensión n y m respectivamente. Seleccionando una base $B=\left\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_n\right\}$ y $C=\left\{\vec{c}_1,\vec{c}_2,\ldots,\vec{c}_m\right\}$ para V y W respectivamente, entonces cualquier $\vec{x}\in V$ tiene como coordenadas $[\vec{x}]_B\in K^n$ en B y su imagen $f(\vec{x})\in W$ tiene como coordenadas $[f(\vec{x})]_C\in K^m$ en C. Si $[\vec{x}]_B=(c_1,c_2,\ldots,c_n)$ entonces:

$$\vec{x} = c_1 \vec{b}_1 + \dots + c_n \vec{b}_n \Rightarrow f(\vec{x}) = f(c_1 \vec{b}_1 + \dots + c_n \vec{b}_n) = c_1 f(\vec{b}_1) + \dots + c_n f(\vec{b}_n)$$

ya que f es lineal. Al usar la base C de W es posible reescribir la ecuación anterior en términos de los vectores de coordenadas en C aplicando la función de coordenadas $[\]_C$. Así la conexión entre $[\vec{x}]_B$ y $[f(\vec{x})]_C$ es:

$$[f(\vec{x})]_{C} = [c_{1}f(\vec{b}_{1}) + c_{2}f(\vec{b}_{2}) + \dots + c_{n}f(\vec{b}_{n})]_{C} = c_{1}[f(\vec{b}_{1})]_{C} + c_{2}[f(\vec{b}_{2})]_{C} + \dots + c_{n}[f(\vec{b}_{n})]_{C} \Rightarrow$$

$$[f(\vec{x})]_{C} = [f(\vec{b}_{1})]_{C} \quad [f(\vec{b}_{2})]_{C} \dots \quad [f(\vec{b}_{n})]_{C}] \cdot [\vec{x}]_{B} = A_{CB} \cdot [\vec{x}]_{B}$$

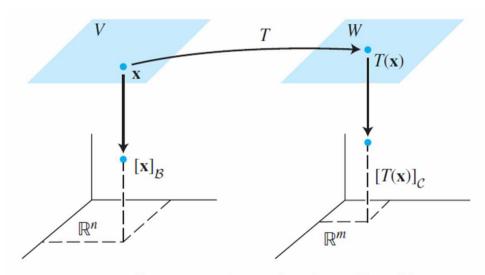


FIGURE 1 A linear transformation from V to W.

Box III.6.1. Algoritmo matriz de una aplicación lineal

Sea una aplicación lineal (homomorfismo) $f\colon V\to W$ entre dos espacios vectoriales V y W, ambos sobre el mismo cuerpo K. Sean $B=\left\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_n\right\}$ y $C=\left\{\vec{c}_1,\vec{c}_2,\ldots,\vec{c}_m\right\}$ sendas bases de V y W. La matriz que representa a f en la bases B y C es tal que $[f(\vec{x})]_C=A_{CB}\cdot [\vec{x}]_B$ y se obtiene del siguiente modo:

Paso 1. Para cada vector \vec{b}_i de la base B hallar sus imágenes $f(\vec{b}_i)$, i=1,2,...,n usando la expresión explícita de la aplicación lineal $f(\vec{x})$.

Paso 2. Escribir $f(\vec{b}_i)$ como combinación lineal de los vectores de la base \mathcal{C} para obtener las coordenadas de $f(\vec{b}_i)$ en \mathcal{C} , $[f(\vec{b}_i)]_{\mathcal{C}}$.

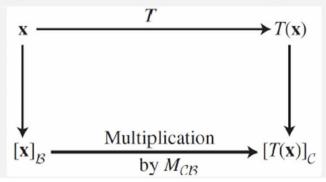
Paso 3. Construir la matriz A_{CB} cuyas columnas son los vectores coordenados $[f(\vec{b}_i)]_C$.

Nota: Análogamente, si la aplicación es de la forma $f: K^n \to K^m$ pueden sustituirse los Pasos 2 y 3 por:

Paso 2'. Reducir mediante operaciones elementales fila la matriz ampliada:

$$\begin{bmatrix} \vec{c}_1 & \vec{c}_2 & \dots & \vec{c}_m \mid f(\vec{b}_1) & f(\vec{b}_2) & \dots & f(\vec{b}_n) \end{bmatrix} \equiv \begin{bmatrix} C \mid f(B) \end{bmatrix} \stackrel{f}{\sim} \begin{bmatrix} I_m \mid [f(B)]_C \end{bmatrix} \equiv \begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \dots & \vec{e}_m \mid [f(\vec{b}_1)]_C & [f(\vec{b}_2)]_C & \dots & [f(\vec{b}_n)]_C \end{bmatrix} = \begin{bmatrix} I_m \mid A_{CB} \end{bmatrix}.$$

Siendo así, se cumple $[f(\vec{x})]_C = A_{CB} \cdot [\vec{x}]_B \ \forall \vec{x} \in V$ donde $[\vec{x}]_B$ son las coordenadas de un vector arbitrario $\vec{x} \in V$ en la base B y $[f(\vec{x})]_C$ son las coordenadas de su imagen en la base C.



III.6.1. Matrices Semejantes de un Endomorfismo

Teorema. Si $f: V \to V$ es un **endomorfismo** (u operador lineal) en V y $B = \{\vec{b}_1, \vec{b}_2, ..., \vec{b}_n\}$ es una base cualquiera de V entonces:

$$[f(\vec{x})]_B = A_{BB} \cdot [\vec{x}]_B \equiv A_B \cdot [\vec{x}]_B \quad \forall \vec{x} \in V \text{ con } A_{BB} \equiv A_B = \left[\left[f(\vec{b}_1) \right]_B \quad \left[f(\vec{b}_2) \right]_B \dots \quad \left[f(\vec{b}_n) \right]_B \right]$$

La representación matricial de f relativa a B (o B-matriz para f) o simplemente, la matriz de f en B es A_B .

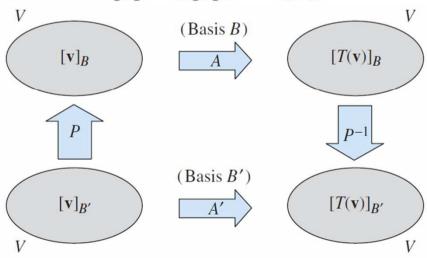
Teorema. Sea $f: V \to V$ un **endomorfismo** en el espacio vectorial V de dimensión finita n sobre un cuerpo K y sea $A_{BB} = A_B$ la matriz asociada a f respecto de cierta base B de V. Si en V se **cambia la base** y llamando a $P_{B \leftarrow B'}$ a la matriz del respectivo cambio de coordenadas, entonces la **matriz asociada** a f en la **nueva base** B' es:

$$A'_{B'B'} = P_{B' \leftarrow B}^{-1} \cdot A_{BB} \cdot P_{B \leftarrow B'}$$

donde $P_{B \leftarrow B'}$ es la matriz de cambio de coordenadas de B' a B y $P_{B' \leftarrow B}^{-1}$ su inversa.

Nota: Así, si A_{BB} representa a f en la base B, la matriz que representa a f en B' es $P_{B' \leftarrow B}^{-1} \cdot A_{BB} \cdot P_{B \leftarrow B'}$.

Nota: Se emplea la siguiente notación $P_{B\leftarrow B'}\Rightarrow (P_{B\leftarrow B'})^{-1}=P_{B'\leftarrow B}^{-1}$



Definición. Dos matrices cuadradas A_n y A'_n del mismo tamaño se dicen **matrices semejantes** si están **asociadas a un mismo endomorfismo** de un espacio vectorial V de dimensión n $(f: K^n \to K^n$ respecto de bases adecuadas), o equivalentemente si existe una matriz regular (invertible) P_n tal que $A' = P^{-1} \cdot A \cdot P$.

Nota: El rango de la aplicación no cambia al cambiar de base y por tanto rang(A) = rang(f) = rang(A').

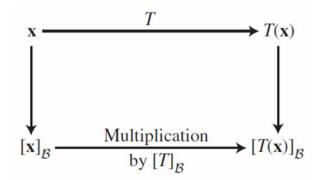
Nota: De la definición de semejanza se sigue que cualesquiera dos matrices que representen en bases diferentes un mismo endomorfismo son semejantes, y lo inverso también es cierto: si dos matrices son están relacionadas por una ecuación de la forma $A' = P^{-1} \cdot A \cdot P$, representan el mismo endomorfismo.

Nota: Algunos libros llaman a las matrices semejantes matrices similares.

Teorema. Determinante de un endomorfismo. Sea un **endomorfismo** $f:V \to V$ de un espacio vectorial V de dimensión finita. Todas las **matrices** asociadas a f en distintas bases de V tienen el **mismo determinante**, que se llama determinante del endomorfismo f y se representa por det(f).

Nota: Dos matrices semejantes son también equivalentes por lo que sus rangos son iguales.

Nota: Dos matrices que sean semejantes tienen el mismo determinante, pero la inversa no es cierta.



III.6.2. Matrices Equivalentes de un Homomorfismo

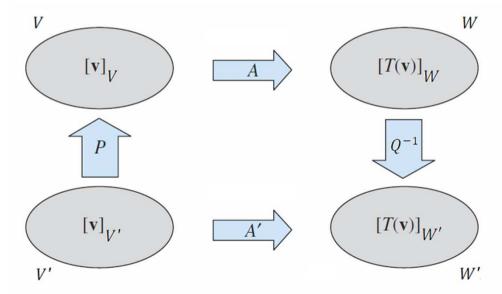
Teorema. Sea $f: V \to W$ una aplicación lineal u **homomorfismo** entre espacios vectoriales de dimensión finita n y m, respectivamente, ambos sobre el mismo cuerpo K. Sea A_{WV} la matriz asociada a f respecto de ciertas bases de V y W que denotaremos por V y W, respectivamente. Si en V y W se **cambian las bases** por V' y W', y llamando $P_{V \leftarrow V'}$ y $Q_{W' \leftarrow W}^{-1}$ a las matrices de los respectivos cambios de coordenadas, entonces la **matriz de** f A'_{WV} , **en las nuevas bases** V' y W' es:

$$A'_{W'V'} = Q_{W' \leftarrow W}^{-1} \cdot A_{WV} \cdot P_{V \leftarrow V'}$$

donde $Q_{W \leftarrow W'}$ es de tamaño $m \times m$, A_{WV} $m \times n$ y $P_{V \leftarrow V}$, $n \times n$.

Nota: Así para toda aplicación lineal $f: V \to W$ se cumple que si A_{WV} es la matriz de la aplicación lineal respecto a las bases V y W entonces $Q_{W' \leftarrow W}^{-1} \cdot A_{WV} \cdot P_{V \leftarrow V'}$, representa a f en las nuevas bases V' y W'. O sea, realizando los cambios de coordenadas oportunos, se pasa a operar con unas nuevas bases en las que la matriz de f es $Q_{W' \leftarrow W}^{-1} \cdot A_{WV} \cdot P_{V \leftarrow V'}$.

Nota: Se usa la siguiente notación $Q_{W \leftarrow W'} \Rightarrow (Q_{W \leftarrow W'})^{-1} = Q_{W' \leftarrow W}^{-1}$.



Definición. Dos matrices $A_{m\times n}$ y $A'_{m\times n}$ de igual tamaño se dicen que son **matrices equivalentes** si están **asociadas a una misma aplicación lineal** de $f:K^n\to K^m$ (respecto de bases adecuadas), o lo que es lo mismo, si existen dos matrices P_n y Q_m invertibles tales que $A'_{m\times n}=Q_m^{-1}\cdot A_{m\times n}\cdot P_n$

Nota: El recíproco también es cierto. Dos matrices que representan la misma aplicación son equivalentes (esto es están relacionadas mediante $A' = Q^{-1} \cdot A \cdot P$).

Teorema. Dos matrices $A_{m \times n}$ y $A'_{m \times n}$ de igual tamaño representan el mismo **homomorfismo** $f: V \to W$ si y solo si son **equivalentes**.

Nota: semejanza ⇒ equivalencia pero equivalencia ⇒ semejanza.

Nota: Si A y A' representan la misma aplicación o lo que es lo mismo, son equivalentes, entonces tienen el mismo rango rang(A) = rang(f) = rang(A').

Teorema (resumen). Dos matrices $A_{m \times n}$ y $A'_{m \times n}$ del mismo tamaño son **equivalentes** si y solo si se verifican cualquiera de las tres condiciones siguientes (que son equivalentes entre sí):

- 1. Están asociadas a una misma aplicación $f: V \to W$ respecto de bases adecuadas: A_{WV} y $A'_{WV'}$
- 2. $A'_{m \times n} = Q_m^{-1} \cdot A_{m \times n} \cdot P_n$ para ciertas matrices cuadradas regulares P_n y Q_m
- 3. Tienen igual rango: rang(A) = rang(A')

III.6.3. Diagonalización por equivalencia: forma canónica de una aplicación

Definición. Sea C_r la matriz canónica de equivalencia de $A_{m \times n}$. Se verifica que A y C_r están asociadas a una misma aplicación lineal $f: K^n \to K^m$ respecto de bases adecuadas. Así, la matriz C_r también se llama forma normal o canónica de equivalencia de la aplicación lineal f.

Nota: No confundir la matriz canónica de equivalencia de una aplicación f con la matriz canónica de f.

Nota: $A y C_r$ son equivalentes, y por tanto, tienen el mismo rango $rang(A) = rang(f) = rang(C_r)$.

Teorema. Si $f: V \to W$ es una aplicación lineal entre espacios vectoriales V y W con rang(f) = r, y A_{WV} es la matriz de f respecto ciertas bases V y W, entonces existen bases V' y W' en las que la representación matricial de f adopta la forma $A_{WV'} = C_r$. Se dice que A_{WV} es **diagonalizable por equivalencia**.

Nota: Las bases en las que la matriz de f es $C_r = Q_{W' \leftarrow W}^{-1} \cdot A_{WV} \cdot P_{V \leftarrow V'}$ son V' y W', esto es, aquellas donde la representación de f es C_r . Las matrices P y Q no son únicas.

Box III.6.2. Diagonalización por equivalencia

Sea $A_{WV} = A_{m \times n}$ la matriz de la aplicación lineal $f: V \to W$ en las bases V del dominio (de dimensión n) y W del codominio (dimensión m). El siguiente proceso proporciona las bases V' y W' en las que la representación matricial de f es $A_{WV'} = C_r$, siendo C_r la matriz canónica de equivalencia de A.

Paso 1. Aplicar operaciones elementales E^f a las filas de la matriz ampliada por filas $[A \mid I_m]$ hasta obtener una forma escalonada por filas U esto es $[A \mid I_m] \stackrel{f}{\sim} [U \mid F]$.

Paso 2. Aplicar operaciones elementales E^c a las columnas de la matriz ampliada por columnas $\left[\frac{U}{I_n}\right]$ siendo U la matriz obtenida en el paso 1 hasta obtener C_r , esto es $\left[\frac{U}{I_n}\right] \stackrel{c}{\sim} \left[\frac{C_r}{C}\right]$.

Nota: Los pasos 1 y 2 consisten exactamente en hallar la factorización de la matriz $C_r = F \cdot A \cdot C$.

Paso 3. La matriz $F = E^f(I_m)$ del paso 1 es la matriz Q^{-1} y la matriz $C = E^c(I_n)$ del paso 2 es la matriz P, las cuales permiten escribir $C_r = Q_{W' \leftarrow W}^{-1} \cdot A_{WV} \cdot P_{V \leftarrow V'}$.

Nota: P y Q no son únicas, ya que F y C no lo son: con otras operaciones elementales se obtendrían matrices P y Q distintas, y por tanto hay múltiples bases distintas en las que la matriz de f es C_r .

Nota: $P_{V \leftarrow V'} = [\ [\vec{v}'_1]_V \ [\vec{v}'_2]_V \ \dots \ [\vec{v}'_n]_V]$ y $Q_{W \leftarrow W'} = [\ [\vec{w}'_1]_W \ [\vec{w}'_2]_W \ \dots \ [\vec{w}'_m]_W]$ permiten hallar los vectores de las bases $V' = \{\vec{v}'_1, \dots, \vec{v}'_n\}$ y $W' = \{\vec{w}'_1, \dots, \vec{w}'_m\}$

Apéndice: Transformaciones geométricas

Elementary Matrices for Linear Transformations in the Plane

Reflection in y-Axis

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Horizontal Expansion (k > 1)or Contraction (0 < k < 1)

$$A = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$$

Horizontal Shear

$$A = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

Reflection in x-Axis

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

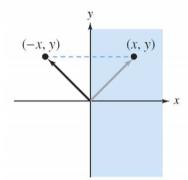
Vertical Expansion (k > 1)or Contraction (0 < k < 1)

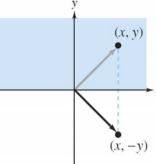
$$A = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$$

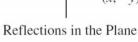
Vertical Shear

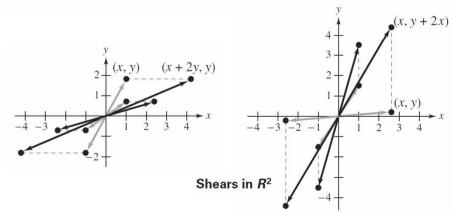
(x, y)

$$A = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$









(a) Reflection in the y-axis:

Reflection in Line y = x

$$T(x, y) = (-x, y)$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}$$

(b) Reflection in the *x*-axis:

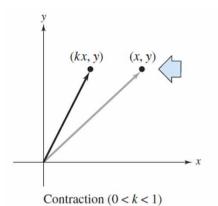
$$T(x, y) = (x, -y)$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ -y \end{bmatrix}$$

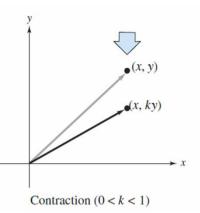
(c) Reflection in the line y = x:

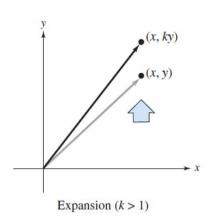
$$T(x, y) = (y, x)$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$$



 $(x, y) \qquad (kx, y)$ $(kx, y) \qquad (kx, y)$ Expansion (k > 1)





(a) Horizontal contractions and expansions:

$$T(x, y) = (kx, y)$$

$$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} kx \\ y \end{bmatrix}$$

(b) Vertical contractions and expansions:

$$T(x, y) = (x, ky)$$

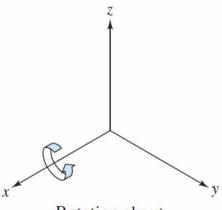
$$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ ky \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

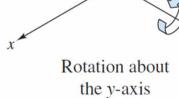
$$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

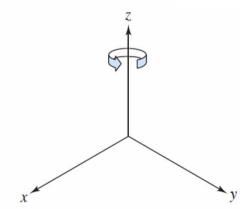
Rotation About the z-Axis

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



Rotation about the *x*-axis





Rotation about the *z*-axis